Жидкокристаллический монитор, (дисплей) – плоский монитор на основе жидких кристаллов.
Синонимы: ЖК-монитор, LCD (англ. liquid crystal display), плоский индикатор, плоский дисплей.
LCD TFT (англ. TFT - thin film transistor — тонкоплёночный транзистор) — одно из названий жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами. Усилитель TFT для каждого субпиксела применяется для повышения быстродействия, контрастности и чёткости изображения дисплея.
Назначение ЖК-монитора
Жидкокристаллический монитор предназначен для отображения графической информации с компьютера, TV-приёмника, цифрового фотоаппарата и пр.
Простые приборы (электронные часы, мобильные телефоны, плееры, электронные термометры и пр.) могут иметь монохромный тип дисплеев (одноцветный или 2-5 цветный). На сегодняшний день (2007) во всех дисплеях ноутбуков используется 18-битный цвет, полноцветное изображение достигается путём быстрого мерцания пикселов. Также 18 бит на точку (6 на канал) применяется в настольных мониторах на основе TN-, и многих *VA-матриц.
Основы работы ЖК-монитора
Под воздействием электрического напряжения жидко-кристаллический элемент меняет свои оптические свойства, что приводит к изменению характеристик отраженного или проходящего насквозь потока света. Для получения стабильных характеристик принято использовать искусственный источник света. Таким образом невырожденный ЖК-монитор состоит из электроники, обрабатывающей видеосигнал (1), ЖК-матрицы (2), модуля подстветки (3), блока питания (4) и корпуса (5). Именно совокупность составляющих определяет свойства монитора в целом.
Технические характеристики ЖК-монитора
Важнейшие характеристики ЖК-мониторов:
• Разрешение: Горизонтальный и вертикальный размеры, выраженные в пикселах. В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией.
• Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
• Соотношение сторон экрана(формат): Отношение ширины к высоте, например: 4:3, 16:9, 16:10.
• Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:10 при одинаковой диагонали.
• Контрастность: отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки, приведенная для них цифра контрастности не относится к контрасту изображения.
• Яркость: количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
• Время отклика: минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
• Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц считается по-разному, и часто сравнению не подлежит.
• Тип матрицы: см. ниже.
• Входы: (напр, DVI, VGA, LVDS, S-Video и HDMI).
У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов сведения, помех от магнитных полей, идеальны фокусировка, геометрия изображения и фиксированное разрешение. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight — задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для изменения пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 Гц (Samsung SyncMaster 225BW) до 400 и более Гц (HannStar HQ191D — 794 Гц).
Технологии
Часы с ЖКИ-дисплеем
Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.
Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.
Время отклика матрицы SXRD-проектора VPL-VW50 Pearl, сконструированных по технологии (англ. SXRD - Silicon X-tal Reflective Display - кремневая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию (англ. PALC - Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.
TN+film (Twisted Nematic + film)
Часть "film" в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку "film" часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на существующий момент одно из лучших, а вот уровень контрастности - нет.
TN + film - самая простая технология.
Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И т.к. направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.
К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц.
IPS (In-Plane Switching)
Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.
На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов передают полную глубину цвета RGB (24 бита, по 8 бит на канал, в отличие от остальных матриц, передающих только по 6 бит на канал).
Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Отображение черного цвета является идеальным. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.
При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.
IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi 1998 год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика. Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT, контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips и NEC остаются единственными производителем панелей по данной технологии.
AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации NEC (например NEC LCD20WGX2) созданных по технологии S-IPS, разработанной консорциумом LG.Philips.
A-TW-IPS - Advanced True White IPS (Расширенная IPS с Настоящим Белым), разработано LG.Philips для корпорации NEC. Представляет собой S-IPS панель с цветовым фильтром TW (True White - Настоящий белый) для придания белому цвету большей реалистичности и расширению цветового диапазона. Этот тип панелей используется при создании профессиональных мониторов для использования в фотолабораториях и/или издательствах.
AFFS - Advanced Fringe Field Switching (неофициальное название S-IPS Pro). Технология является дальнейшим улучшением IPS, разработана компанией BOE Hydis в 2003 году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays.
*VA(Vertical Alignment)
MVA — Multi-domain Vertical Alignment.
Эта технология разработана компанией Fujitsu и теоретически является оптимальным компромиссом практически во всех областях. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов 176—178 градусов), время отклика примерно в 2 раза меньше, чем для матриц IPS, а цвета отображаются гораздо более точно, чем на старых TN+Film.
MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка.
Достоинствами технологии MVA являются небольшое время реакции, глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.
Недостатки MVA в сравнении с IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения.
Аналогами MVA являются технологии:
-PVA(Patterned Vertical Alignment) от Samsung.
-Super PVA от Samsung.
-Super MVA от CMO.
Матрица MVA/PVA считается компромиссной между TN и IPS, как по цене, так и по потребительским качествам.